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Abstract. Discharge currents and susceptibility functions are given for KTaO, doped with 
Li. These functions are parametrised in terms of a Kohlrausch-Williams-Watts decay 
function involving a stretched exponential in the time domain. The parameters, namely the 
size of the relaxation step, the relaxation rate and the stretch index are given as a function 
of temperature. The step size shows the usual cusp at T, whereas neither the relaxation 
time nor the stretch index are critical functions of T - T,, where Tf denotes the transition 
temperature to the dipolar phase. Below T,, arithmetic decay is observed. 

1. Introduction 

Some of the earliest observations in solid state physics were of the release of mechanical 
stress [l] and the discharge of electrical polarisation as found by Kohlrausch [2]. In both 
cases it was found that the discharge, while being monotonic, occurred at a time- 
dependent rate which was not proportional to the polarisation present at that time. 
Attempts to describe the ensuing non-exponential decay by heuristic functions were 
numerous [3]: the most prestigious decay function is perhaps the one by Williams and 
Watts [4,5], who stretched the time variable from t to t P ,  with 0 < /3 S 1, in order to put 
the polarisation decay into exponential (KWW) form: 

~ ( t )  = Q~ exp(-(at)P) (1) 
where Qo is the total polarisation induced by a field applied at all times t < 0, a a 
relaxation rate, and /3 an adjustable parameter. This decay function has the merit of 
describing well numerous experiments on decay currents which are proportional to 

As a result of the polarisation decay, the dielectric susceptibility E* = E'  + iE2 
depends on frequency f =  w/2x. It is related to the decay function by the Fourier 
transform 

aQ/at. 

&*(U)  - E ,  = ( ~ ? G E , , E ) - ~  exp(iot)(dO/at) d t  (2) J 
where = 8.85 x C V-' m-l and Eis  the field applied at negative t .  Only recently 
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have there been attempts to model KWW behaviour [5-81 and to express its parameters 
in terms of relaxation processes. 

A conceptually simpler approach is to let relaxation take place though a distribution 
of energy barriers. Wagner [9] has given the result of this model without identifying it 
explicitly as a Debye relaxation [lo] over barriers. In this (WD) model 

&*(U)  - E ,  = A &  1 d t  z-l (1 + iwt)-'o-1n-1'2 exp{ - [In( zao)o]*}. (3) 

The parameters A&, a. and o depend on temperature and have the meaning of the 
relaxation step, the most probable relaxation rate (not identical to a in equation (1)) 
and the logarithmic width of its distribution, respectively. There are numerous 
approaches [ll-151 to fit &*(U)  to numerical expressions, some quite general [16], but 
most of them without regard to the temperature-dependent physical relaxation process. 
To distinguish between the mutually exclusive KWW and WD relaxation processes, the 
susceptibility has to be known in a wide frequency and temperature range. Of particular 
interest are systems with high susceptibility and thus large decay currents which allow 
measurements to be extended in the mHz range. Such a system [17,18] is KTaO,:Li, 
where the perovskite lattice has a high susceptibility. The Li atoms, carrying a dipole 
moment due to their off-centre positions, are the relaxing species. At sufficient con- 
centration they are known to freeze into a disordered polar state [19]. 

We wish to establish how this freezing takes place. To this end we present data for 
i(t) and &(U),  and express the results in terms of the time-honoured KWW and WD 
functions. We shall confront the results with model predictions based on these functions 
and attempt to express the background of these models in physical terms. 

2. Experimental results 

Single crystals [20] of KTa03  doped with Li have been subjected to an electric field, 
usually for 3600s. The release of charge was then measured under short-circuit 
conditions, typically once every 2 s for about 1000 s. Since the current typically decays 
by about two orders of magnitude in the time interval of observation, we give our 
results in terms of plots on log-log scale. Figure 1 shows plots of log i versus log t for 
K0,966Li0,034Ta03 at several temperatures. In the same figure we have drawn the curve 
resulting from the best fit to the Williams-Watts formula for the decay current, dCD/dt .  
We note that the log i versus log t curves are non-linear above about 60 K; they are 
virtually linear below that temperature. Also given in this figure is a plot of pure KTa03 
taken at 50 K. The low amplitude of the current in this sample indicates that the lattice 
contribution is negligible: the major contribution to the current originates from the 
impurity system. 

The decay function i( t)  is related to the dielectric susceptibility &(U) by a Fourier 
transform. Measurements by AC techniques in the corresponding frequency range, i.e. 
down to Hz, however, require impedance matching to the sample impedance which, 
for a capacitance of 100 pF with tan 6 = lo-,, 121 - lo1' Q at lo-, Hz, is a non-trivial 
problem [21]. We have thus resorted to measuring &(U) at higher frequencies over a 
sufficiently wide range of temperatures, allowing the connection between &(U) and i(t) 
to be made. 

The data for &(U) are shown in figure 2. Following Moynihan et aZ[22], we plot the 
real and imaginary part of E ,  i.e., versus logf,f = 0/2x ,  and estimate the size and 
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Figure 1. The polarisation decay current and fit to 
a @ / a t .  Sample: &,,Lio.,,,TaO,; 0: 65.9 K; *: 
63.9 K;O: 60.0 K; +: 55.5 K; X:  48.0 K. Forpure 

Figure 2. Dielectric susceptibility E *  = E ,  + i E 2  

versus log( frequency). The parameter in paren- 
theses is temperature. The sample is, as in figure 

KTaO,, U: 48 K. 1, KTL 34. 

of the dispersion step, its centre frequency and the width of the versus In w curves. 
These estimates allow us to refine the parameters of the KWW and the WD functions. 

In figure 3 we give a detailed plot of E ~ ( w )  at 95 K and 105 K together with best fits 
to KWW and WD. We note that the Gaussian distribution of ln(zao) generates a dielectric 
function with the property [9] 

E 2  (ln(w/%)) = E2(-ln(w/ao)). (4) 
In contrast, the KWW dielectric function ~ ~ ( l n ( w / a ~ ) )  is asymmetric [5]; it extends 

further into the high-frequency range. Deviations of ~ ~ ( l n ( w / a ~ ) )  from symmetry may 
thus hint at KWW behaviour. An inspection of the data in figure 3(a) and of the variances, 
suggests that the behaviour of E ~ ( w )  is intermediate between that of KWW and WD. As T 
decreases, asymmetry increases and fits of versus KWW and WD tend to confirm this 
finding (figure 3(b)). The accessible frequency range for E ~ ( w )  is, however, insufficient 
to establish KWW behaviour with certainty. This is afforded by an evaluation of the i ( t )  
data. For this purpose we have evaluated the Fourier transform of the Wagner [9] 
integral 

a 
dt 

i = -1 exp(-at) e ~ p [ - ( l n ( a / a ~ ) ) ~ A - ~ ]  d a / a  (5) 
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Figure3.Afitof thesusceptibility to the equation 
(3)) and KWW (equation (1)) function. (a )  T = 
105 K,  ( b )  T =  95 K. 

Figure 4. The KWW parameter Q0, and dielectric 
step A& versus T; E = 36 kV m-I. 

whose leading [23] term is 
i ~ t - 2 -  I l A 2  

for A # 0. 
Clearly, the negative exponen 2 + 1/A2 is )o large I fit the low-temperature 

data. On the other hand, the KWW function predicts i --tP-' with 0 < p < 1, which is 
compatible with the data for t zo and allows a determination of p (but not of a and 
ip,) in the range where log i - log t ,  i.e. below 60 K. Since the low-temperature data 
clearly exclude WD behaviour while the numerical discrepancy between the KWW and 
WD fits is rather small at high temperatures, we express all our results in terms of the 
KWW function. 

Figure 4 shows the parameter Q0 which is the total polarisation induced by the 
application of a field E .  It is readily converted into the dielectric relaxation step A& = 
ip0/E&,, where E~ = 8.85 pC V-' m-l (scale also shown). @, increases rapidly as T 
decreases and below 65 K, which corresponds to the stability limit of remanent polar- 
isation [19], it assumes a constant value of -2 mC m-2. This is only a small fraction of 
the saturation polarisation [19] of 60 mC m-2. Keeping ipo small (by applying small 
DC fields) ensures linearity and the applicability of the Fourier transform. It has the 
disadvantage of generating only small decay currents. The KWW relaxation parameter is 
given in figure 5 in an Arrhenius representation, In a versus T-l. A quite reasonable fit 
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Figure 5. The KWW parameter a in Arrhenius 
representation. Note that the straight-line fitting 
In a t o  T-'excludeseffective freezing at substanti- 
ally non-zero T.  

'.O 1 Istng 
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Figure 6. The KWW parameter /3, the stretched-exponential index, versus temperature. A fit 
to a linear function with p = 0.1 + 5 X lW3 T ,  and a comparison with Carmesin and Binder's 
[32] theoretical predictions are shown; note that below 80 K,  /3 was measured by the depolar- 
isation method whereas above 80K, /3 was measured with the (more precise) bridge 
technique. A discrete change of p at T, is highly unlikely. 

to a straight line is possible with a slope of 2000 K and an intercept of (Y - 1013 s-'. The 
numerical values of (Y and a. as well as of 0 and A&EDC are quite close for T = 95 K and 
105 K. 

In figure 6 we plot the Kohlrausch parameter p versus temperature. We note a drop 
from 0.7 at 120 K to values around 0.3 at 48 K. This corresponds to a broadening of the 
g(z) distribution with an increase from e4 to e8 which is 1.5 to 3 decades on each side of 
z,,,. We find thus that the KWW function accounts for the low-temperature behaviour 
of KTa03:Li and that a crossover to WD behaviour occurs near Tf. These findings 
are distinct from the findings [24] for KBrOH, where WD behaviour is present at all 
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temperatures and where the width of the Gaussian distribution at the base of the WD 
function decreases strongly with temperature, whereas the temperature dependence of 
h e  is weak. 

3. Interpretation 

In view of the plateau in the relaxation step A& below Tf and the change of the relaxation 
rates by several orders of magnitude near T,, we focus our attention on relaxation models 
devised for spin and dipole glasses. They include the self-consistent random-field model 
of a dipole glass by Fischer and Klein [25], decay hierarchies in glasses [5,6], ran- 
domisation [7] of free energy, Glauber dynamics of spin glasses [26] and numerical 
simulation [SI of the king spin glass [27] by the Monte Carlo method. 

Fischer and Klein [25] have evaluated random fields in dipole glasses arising from 
random dipolar interaction. A self-consistent mean-field treatment led to a spread of 
fields, var(E), which increased critically below T,, and to divergent susceptibilities. We 
realise that the presence of a local field affects the barrier between dipolar orientations; 
thus random fields lead to random distributions of barriers whose spread we have 
deduced from our data. While we agree with Fischer and*Klein that the variance increases 
below T,, we also find sizable non-zero variance above Tf, where their model has 
var(E) = 0. On the other hand, we confirm their prediction for the behaviour of the 
susceptibility. Dynamical effects were studied by Sompolinsky and Zippelius [26], the 
most conspicuous result being the prediction that, above some minimum coo, e2 = wV 
where I, = d at T,. While in KTa0,:Na a wide range of such behaviour [27] was present 
for E ~ ,  we find here that below some critical time, CP = t-' which is compatible with e2 = 

As an alternative, it has been proposed that a dipolar system may relax through a 
cascade of states and that it may be constrained by some condition on occupancy of the 
target state [5]. A particular choice of density of states and of a constraint hierarchy lead 
to a Kohlrausch decay. An attempt to evaluate the Kohlrausch parameters in terms of 
constraint parameters led us to contradictory findings: from the value of /3( T) we are led 
to believe that the constraint parameter (number of spins in the preselected state in the 
target level) changes from 1.2 at T - Tf = 50 K to 1.5 at Tf. Evaluating the same 
parameter from the relaxation rate leads to a change of a factor of 15 in the same 
temperature range. We also note that the relaxation rate given in terms of the Vogel- 
Fulcher law z - exp( -E/( T - T,)) is in contradiction to our data and also to data taken 
on spin and dipole glasses unless we choose to fit z to a law of the kind t = exp( - E/ 
(T- TVF)) where the Vogel-Fulcher temperature TVF is a variable. Here, TVF is negli- 
gibly small and, as in spin glasses [28], certainly very different from Tf. While relaxation 
in hierarchical and ultrametric spaces leaves the question of a cusp of A& at Tf open, 
theories on spin glasses give affirmative answers to this question [28]. 

The dynamics of spin glasses have been analysed in detail by computer simulation 
[SI. The result for the autocorrelation function which is proportional to the derivative 
of the decay function was parametrised as 

below Tf where x = 0.3. 

d cP/d t = cPo aB exp( - ( & ) P ) t - "  (7) 
which deviates from the Kohlrausch function by the exponent x being different from 
/3 - 1. The parameters a and p behave much as in our experiment, but x is so small that 
tPX could be replaced by 1 - x In t .  
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The results displayed [SI for d@/dt resemble i( t)  in our figure 1: above Tf, In i versus 
In tis bent downward, below T,it is a straight line. The transition to power-law behaviour 
occurs where (Y equals the maximum time of measurement, namely near Tf in Ogielski's 
simulation (after lo9 Monte Carlo steps) and near Tf in the experiment (after about 
1000 s )  as well. Except for slight deviations in the short-term behaviour, t X  instead of 
t p - l ,  which might be due to different initial conditions, Ogielski's simulation agrees 
extremely well with our data, which are therefore largely compatible with the Ising 
model of a nearest-neighbour random ?1 interaction, called the Ising spin glass. 

The attribution of KTa03:Li to the class of Ising spin glasses raises (at least) two 
questions; that of dimensionality and that of dynamical scaling. We offer plausible 
arguments for both. (i) The restriction of dipolar motion to 180" flips, i.e. to one 
dimension, was proposed on the grounds of dielectric, ultrasonic and NMR relaxation 
data [29] (the latter two being absent for our relaxation branch). It was argued that the 
dipole deformed the lattice such that an adjacent deformation by 90" cost too much 
energy. (ii) Scaling implies [28] that ln( tao)  = e, where 5 is the correlation length, or 
cluster size, of the polar object and z = 2. Since E - nearly diverges at Tf, ln(tcuo) 
should also diverge, but instead we find tag - exp(-E/kT). Unlike in spin glasses, 
is also strongly dependent upon T ,  so z remains undetermined. Both effects originate 
from the strong anisotropic dipole-lattice interaction which in our opinion distinguishes 
dipole glasses from spin glasses. What they have in common, as far as the present 
investigation is concerned, is a crossover from relaxation over distributed barriers [9] to 
hierarchical [5 ,6]  KWW relaxation and a susceptibility rising to a plateau. 

It has been suggested [30] that barrier distributions were caused by random strains. 
The data for KBr:CN are very suggestive: the distribution width of such strains does not 
alter upon cooling, these strains merely become larger and determine the barrier for 
dipolar reorientation as well. Many other findings in cyanide glasses have indeed been 
attributed to random strains [31]. 

We suggest thus that crossover from random-strain to hierarchical (KWW) relaxation 
behaviour is associated with the freezing transition of a random-bond glass. The tran- 
sition does not occur where motion reaches a complete standstill (which is the hypo- 
thetical Vogel-Fulcher temperature) but where a hierarchy of states is established. 
This is at the transition from independent-dipole (Wagner-Debye) relaxation to KWW 
hierarchical relaxation. 

4. Conclusions 

Susceptibility and related polarisation-decay data in dipole glasses allow the nature of 
the freezing process to be evaluated. Upon cooling, the susceptibility increases in a 
Curie-Weiss-like fashion and evidence of growing disorder is gained from its frequency 
dependence. This disorder is best described by a Gaussian distribution of barriers which 
hinder free rotation of Li dipoles. At some temperature Tf, the susceptibility stops 
increasing and below Tf the Gaussian distribution no longer fits the data. In this tem- 
perature range, excellent fits are obtained to the Kohlrausch-Williams-Watts function 
which is regarded as evidence for sequential relaxation through cascades of states. These 
states reveal the nature of glass originating from random bonds rather than from random 
fields. 
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